MATH 3060 Tutorial 9

Chan Ki Fung

November 24, 2021

1 Questions

- 1. True or False: (a,b,c is related to Baire catgeory theorem)
 - (a) There exists a metric d on \mathbb{Q} so that d is complete and d and d_{std} define the same open sets.
 - (b) \mathbb{Q} is an intersection of countably many open subsets of \mathbb{R} .
 - (c) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Suppose that for all x > 0, $\lim_{n \to \infty} f(nx) = 0$ $(n \in \mathbb{N})$. Then $\lim_{x \to \infty} f(x) = 0$.
 - (d) Let $f : X \to Y$ be a continuous map of metric spaces, and S is a compact subset of X. Then f(S) is compact.
- 2. (nested interval) Let X be a metric space. Show that a subset $S \subset X$ satisfies the following condition if and only if it is compact: For any decreasing sequence of closed subsets in S:

$$S \supset E_1 \supset E_2 \supset E_3 \supset \cdots$$

If each E_i is nonempty, then $\bigcap_{i=1}^{\infty} E_i$ is nonempty.

3. (An application of Inverse function theorem) Consider the function p : $\mathbb{R}^n \to \mathbb{R}^n$ given by

$$p(x) = (p_1(x), p_2(x), \dots, p_n(x)),$$

where $p_k(x) = x_1^k + x_2^k + \cdots + x_n^k$.

- (a) Show that p is not a local diffeomorphism near any point on the plane $x_1=x_2$
- (b) Show that the Jacobian

$$J = \det\left(\frac{\partial p_i}{\partial x_j}\right) = \prod_{i < j} (x_i - x_j)$$

(c) What if we replace p_i by the elementary symmetric polynomials?

- *Proof.* (a) Since $p(x + \epsilon, x, x_3, ...) = p(x, x + \epsilon, x_3, ...)$, p is not injective in any neighbourhood of $(x, x, x_3, ...)$, and in particular not local diffeomorphism near that point.
- (b) (a) part tells us that J vanishies on the plane $x_1 x_2 = 0$. On the other hand, we know that J is a polynomial of degree $\frac{n(n-1)}{2}$, so $(x_1 x_2)$ must be a factor of J. Similarly, $(x_i x_j)$ is a factor of of J. Therefore, we must have

$$J = c \prod_{i < j} (x_i - x_j)$$

for some constant c. By comparing the coefficients of $x_1^{n-1}x_2^{n-2}\cdots x_{n-1}$, we see that c = 1.

(c) Similar to (b), but $c = (-1)^{n(n-1)/2}$ this time.

- 4. (Baire Category theorem)
 - (a) Show that there exists a function $f : \mathbb{R} \to \mathbb{R}$ which is continuous at every irrational number but discontinuous at every rational number.
 - (b) Show that there does not exist a function $f : \mathbb{R} \to \mathbb{R}$ which is continuous at every rational number but discontinuous at every irrational number.